Skip to content

BIG_NUMBER

Generate a Plotly figure, displaying a big number with an optional prefix and suffix. Inputs ------ default : OrderedPair|Scalar|Vector the DataContainer to be visualized Params: relative_delta : bool whether or not to show the relative delta from the last run along with big number suffix : str any suffix to show with big number prefix : str any prefix to show with big number title : str title of the plot, default = "BIG_NUMBER" Returns: out : Plotly the DataContainer containing the Plotly big number visualization
Python Code
from flojoy import (
    flojoy,
    Plotly,
    OrderedPair,
    DefaultParams,
    SmallMemory,
    Scalar,
    Vector,
)
from typing import cast
import plotly.graph_objects as go
from blocks.DATA.VISUALIZATION.template import plot_layout

MEMORY_KEY = "BIG_NUMBER_MEMORY_KEY"


@flojoy(inject_node_metadata=True)
def BIG_NUMBER(
    default: OrderedPair | Scalar | Vector,
    default_params: DefaultParams,
    suffix: str,
    prefix: str,
    title: str,
    relative_delta: bool = True,
    scientific_notation: bool = False,
) -> Plotly:
    """Generate a Plotly figure, displaying a big number with an optional prefix and suffix.

    Inputs
    ------
    default : OrderedPair|Scalar|Vector
        the DataContainer to be visualized

    Parameters
    ----------
    relative_delta : bool
        whether or not to show the relative delta from the last run along with big number
    suffix : str
        any suffix to show with big number
    prefix : str
        any prefix to show with big number
    title : str
        title of the plot, default = "BIG_NUMBER"

    Returns
    -------
    Plotly
        the DataContainer containing the Plotly big number visualization
    """

    job_id = default_params.job_id
    node_name = __name__.split(".")[-1]
    layout = plot_layout(title=title if title else node_name)
    fig = go.Figure(layout=layout)

    prev_num = cast(str, SmallMemory().read_memory(job_id, MEMORY_KEY))
    match default:
        case OrderedPair():
            big_num = default.y[-1]
        case Scalar():
            big_num = default.c
        case Vector():
            big_num = default.v[-1]
        case _:
            raise ValueError(f"Invalid input type {type(default)} for node {node_name}")

    delta_val_format = ".1%" if relative_delta is True else ".1f"
    val_format = "%g" if scientific_notation is False else ".4e"

    fig.add_trace(
        go.Indicator(
            mode="number+delta",
            value=big_num,
            domain={"y": [0, 1], "x": [0, 1]},
            number={"prefix": prefix, "suffix": suffix, "valueformat": val_format},
            delta=None
            if prev_num is None
            else {
                "reference": float(prev_num),
                "relative": relative_delta,
                "valueformat": delta_val_format,
            },
        )
    )
    SmallMemory().write_to_memory(job_id, MEMORY_KEY, str(float(big_num)))

    return Plotly(fig=fig)

Find this Flojoy Block on GitHub

Example

Having problems with this example app? Join our Discord community and we will help you out!
React Flow mini map

In this example, the LOOP node is used to iterate over an app multiple times, specifically 5 times.

Inside the LOOP body, we start by multiplying two CONSTANT nodes, 4 and 2, together. For subsequent iterations, we utilize a special node called FEEDBACK. This node captures the result of multiplication of the two constants from the previous iteration and multiplies it to a CONSTANT node with a value of 2.

To visualize the sum, we employ the BIG_NUMBER node, which generates a plotly figure displaying a large number. The figure includes a relative delta, which represents the change relative to the previous iteration.