Skip to content

LOCAL_FILE

The LOCAL_FILE node loads a local file of a different type and converts it to a DataContainer class. Params: file_path : str The path to the file to be loaded. This can be either an absolute path or a path relative to the "nodes" directory. default : Optional[TextBlob] If this input node is connected, the file name will be taken from the output of the connected node. To be used in conjunction with batch processing. file_type : str Type of file to load, default = image. If both 'file_path' and 'default' are not specified when 'file_type="Image"', a default image will be loaded. If the file path is not specified and the default input is not connected, a ValueError is raised. Returns: out : Image | DataFrame Image for file_type 'image'. Grayscale from file_type 'Grayscale'. DataFrame for file_type 'json', 'csv'.
Python Code
import os
from typing import Literal, Optional

import numpy as np
import pandas as pd
from flojoy import DataFrame, Grayscale, Image, TextBlob, flojoy
from PIL import Image as PIL_Image


def get_file_path(file_path: str, default_path: str | None = None):
    # TODO: We should not do this, this is too fragile
    # We need to get an actual file picker going to get the absolute path

    f_path = file_path if file_path != "" else default_path
    if not f_path:
        raise ValueError(
            "The file path of the input file is missing. "
            "Please provide a input TextBlob or a provide `file_path` with a value!"
        )
    if not os.path.isabs(f_path):
        path_to_nodes = __file__[: __file__.rfind("blocks") + 6]
        return os.path.abspath(os.path.join(path_to_nodes, f_path))
    return f_path


@flojoy(
    deps={
        "scikit-image": "0.21.0",
    }
)
def LOCAL_FILE(
    file_path: str | None = None,
    default: Optional[TextBlob] = None,
    file_type: Literal["Image", "Grayscale", "JSON", "CSV"] = "Image",
) -> Image | DataFrame | Grayscale:
    """The LOCAL_FILE node loads a local file of a different type and converts it to a DataContainer class.

    Parameters
    ----------
    file_path : str
        The path to the file to be loaded. This can be either an absolute path or
        a path relative to the "nodes" directory.

    default : Optional[TextBlob]
        If this input node is connected, the file name will be taken from
        the output of the connected node.
        To be used in conjunction with batch processing.
    file_type : str
        Type of file to load, default = image.
        If both 'file_path' and 'default' are not specified when 'file_type="Image"',
        a default image will be loaded.
        If the file path is not specified and the default input is not connected,
        a ValueError is raised.

    Returns
    -------
    Image | DataFrame
        Image for file_type 'image'.
        Grayscale from file_type 'Grayscale'.
        DataFrame for file_type 'json', 'csv'.
    """

    default_image_path = os.path.join(
        os.path.dirname(os.path.abspath(__file__)),
        "assets",
        "astronaut.png",
    )

    file_path = default.text_blob if default else file_path
    file_path = "" if file_path is None else file_path

    match file_type:
        case "Image":
            file_path = get_file_path(file_path, default_image_path)
            f = PIL_Image.open(file_path)
            img_array = np.array(f.convert("RGBA"))
            red_channel = img_array[:, :, 0]
            green_channel = img_array[:, :, 1]
            blue_channel = img_array[:, :, 2]
            if img_array.shape[2] == 4:
                alpha_channel = img_array[:, :, 3]
            else:
                alpha_channel = None
            return Image(
                r=red_channel,
                g=green_channel,
                b=blue_channel,
                a=alpha_channel,
            )
        case "Grayscale":
            import skimage.io

            file_path = get_file_path(file_path, default_image_path)
            return Grayscale(img=skimage.io.imread(file_path, as_gray=True))
        case "CSV":
            file_path = get_file_path(file_path)
            df = pd.read_csv(file_path)
            return DataFrame(df=df)
        case "JSON":
            file_path = get_file_path(file_path)
            df = pd.read_json(file_path)
            return DataFrame(df=df)
        # TODO: we might add support for following file types later
        # case "XML":
        #     file_path = get_file_path(file_path)
        #     df = pd.read_xml(file_path)
        #     return DataFrame(df=df)
        # case "Excel":
        #     file_path = get_file_path(file_path)
        #     df = pd.read_excel(file_path)
        #     return DataFrame(df=df)

Find this Flojoy Block on GitHub

Example

Having problems with this example app? Join our Discord community and we will help you out!
React Flow mini map

In this example LOCAL_FILE node is loading a default astronaut image which is then visualized with a plotly visualizer node IMAGE.